
 

 
ANALYSIS OF SINGLE-DEGREE-OF-FREEDOM SYSTEMS 

MODULE: MMME2046 DYNAMICS & CONTROL 

 
 
 
Initially, we will look at structures that can be modelled with one degree of freedom.  This is 
the simplest model for a vibrating structure.  The model normally takes the form of a rigid 
body restrained by one or more massless springs.  It works well for structures with one 
resonance or where one resonance dominates the vibration behaviour.  It gives good insight 
into vibration behaviour and is often used as a first approximation for more complicated 
structures. 
 
We will look at a number of different examples where single-degree-of-freedom dynamic 
models are appropriate, but the general approach to the analysis will be the same in all cases 
and will involve the following steps. 
 
 1) Convert the physical structure into a dynamic mass-spring model. 

 2) Draw a free body diagram.  Displacing the body from its equilibrium position will 
create forces in the restraining springs that will try to return the body to 
equilibrium.  The free body diagram can be thought of as a “snapshot” of the state 
of the system when it has moved away from equilibrium by a chosen amount.  
Drawing the free body diagram is the key step in the analysis and should be 
tackled systematically.  There are three stages. 

(i) Start with the system in equilibrium and draw it as a free body.  To 
create the “free” body, draw it without any of the restraining springs.  
The forces exerted by the springs will be added in stage (iii). 

(ii) Select a motion coordinate to describe how the system will deflect from 
its equilibrium position and mark it on the diagram. 

(iii) Apply a positive deflection in the chosen motion coordinate, identify the 
forces (and/or moments) that result and draw them on the diagram.  It is 
critical that the positive directions of the forces due to a positive 
deflection are shown correctly. 

 3) Apply the appropriate form of Newton's 2nd Law of motion to give the equation of 
motion for the system. 

 
 
The following pages show how steps (1), (2) and (3) can be applied to a number of examples. 
Others will crop up later in the module.  The main source of mistakes lies in applying the steps 
incorrectly (some students even attempt to miss some steps out!) and it is vital that you 
adopt a systematic approach using the three steps when setting up solutions.  See 
how the problems on the next pages are developed and follow the same pattern yourself. 
 

 At this stage, we will concentrate on finding the NATURAL FREQUENCY of the 
systems.  This is the frequency at which a system will vibrate when displaced 
from equilibrium and then released.  Later, we will consider the effects of 
external excitation and damping, but these are omitted for the moment. 

 
When we look at the effects of excitation, we will find that for most engineering structures 
there is a maximum response if the excitation frequency coincides with the natural frequency 
(which is why we need to know what its value is).  This effect is called resonance and the 
term resonant frequency is often used instead of natural frequency (although, strictly 
speaking, the two are different as we shall see later). 
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Example 1 Simple Mass-spring System 

 

If a mass m (kg) is suspended from a spring of stiffness 

k (N/m), it will move down under the effect of gravity 

and stretch the spring by a distance xeq before reaching 

its static equilibrium position.   
 
Once in equilibrium, the resultant force on the mass is 
zero and hence: 
 

eqxkmg   

 
 
 
 
What then happens if the mass is given a further 

downward displacement, x, away from equilibrium 

and then released? 
 

 

The displacement x produces an additional force in the spring of xk , as shown in the central 

diagram above.  Since we know from the static equilibrium case that eqxkmg  , the resultant 

force on the mass is xk , as shown in the right-hand diagram.   

 
Remembering that the displacement and the force 
are both vectors, we see that a positive downward 
displacement from equilibrium produces a positive 
upward resultant force on the mass.  This acts to 
return it to its equilibrium position.  At any instant 

when x was negative (meaning that the mass was 

above its equilibrium position), the “upward” 

resultant force, xk , would also be negative, telling 

us that the force was actually acting downwards at 
this instant.  Since the force always acts to return 
the mass to equilibrium, the term restoring force 
is often used. 
 

So, what happens when the mass is displaced downwards (x positive) away from equilibrium 

and then released?  Initially, there will be an upward resultant force on the mass, so it will 
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accelerate upwards.  Since downward movement has been chosen as positive, upward velocity 
is negative.  When the mass reaches its equilibrium position (point A in the figure on the 

previous page), x is zero and the resultant force is zero as well.  At this point, the velocity has 

its maximum upward (i.e., negative) value.  This upward velocity carries the mass past this 

point and it moves above the equilibrium position.  x now becomes negative and the resultant 

force then acts downwards and slows the mass down.  At point B, the mass reaches its 
maximum upward (i.e., negative) displacement and is instantaneously at rest.  Since x is still 
negative, the resultant force continues to act downwards.  The mass passes back through the 

equilibrium position (point C), when it has its maximum downward (i.e., positive) velocity. x 

becomes positive once more and the upward resultant force slows the mass down until it 
reaches its original starting position (point D). 
 
We see that the resultant force on the mass depends only on the displacement 
measured from the equilibrium position.  Here, and in all other problems, the static 
forces in springs exactly balance any gravitational forces on the mass under 
equilibrium conditions.  Because they always cancel each other, we ignore them and 
start at the equilibrium position and consider displacements away from that position. 
 
Note: We assume that displacements are small.  In particular, we assume that the stiffness of 

the spring is constant.  In real systems, stiffness may vary with displacement. 
 
 

Physical System    STEP 1:  Dynamic mass-spring model 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
STEP 2:  Free Body Diagram 

(i) Remove the spring to leave the mass 
by itself. 

(ii) Mark the chosen positive direction for 
displacement. 

(iii) Give the mass a positive displacement, 
write down the expression for the force 
and add it to the diagram to show its 
positive direction. 

 
 
 
 
 
STEP 3:  Equation of motion 
 
 
 
 

k 

m 



 
 

4 

This can be re-arranged to give an equation in the form of a second-order ordinary differential 
equation. 
 
 
 
 
Any sinusoidal function of appropriate periodicity  satisfies this equation, but from the earlier 
description of what happens to the mass when it is displaced downwards and then released, a 

suitable mathematical form would be   tXtx ωcos .  This describes a sinusoidally varying 

displacement at frequency ω, with maximum deflections of X above and below the equilibrium 

position.  The frequency of the vibration is called the natural frequency and is the 
characteristic quantity we are trying to find.  Sinusoidal displacement like this is often referred 
to as simple harmonic motion and many of you will have come across this before.  
 

Substitute for  tx  into the equation of motion. 

 
 
 
 
 
 
 

The natural frequency for this system is therefore given by 
m

k
.  The symbol, nω , is normally 

used for the natural frequency.  When used in the equation of motion, ω must have the units 
of rad/s to make the equation consistent.  However, the value would normally be quoted (in a 
report, for example) using the units of Hz (Hertz or cycles/s).  The two are linked by the 
equation: 
 

   rad/s
π2

ω
Hz n

nf   

 
This is an example of where the SI system of units can catch you out.  The rule is: when 
substituting frequency values into formulae, use units of rad/s.  When quoting 
frequency values in answers or reports, use units of Hz. 
 
 
You will find that other systems have different equations of motion, but all will have the same 
form, namely: 

0 zKzM   

 

where z is the chosen motion coordinate.  For some systems, the expressions for the 

coefficients M and K can be quite complicated.  Following the above analysis, we would find 

that the natural frequency would be given by 
 

 rad/sω
M

K
n   

 
Hence, as soon as you’ve derived the equation of motion and obtained the coefficients of the 
displacement and acceleration, you can immediately write down the expression for the natural 
frequency of a system.  Indeed, this is the way you should always do it. 
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Example 2 Vertical vibration of a block on a flexible cantilever beam  

 
Physical System 

 
 
 
 
 
 
 
 
 
 
 
 
The block will be treated as a rigid mass and the supporting beam as a massless spring.  The 

bending stiffness of the beam is given by 
L

IE3
  =  k

3B   (this is on the Formula Sheet).  See 

the note at the bottom of page 5 relating to the symbol I in this formula. 

 
 
STEP 1:  Dynamic Model 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 

Example 3 Torsional vibration of a block on a cantilever beam 

 
 
For torsional motion, the support beam can be modelled as a spring with torsional stiffness 

L

JG
  =  kT  (with units of Nm/rad).  The block can again be modelled as a rigid body, but with 

a moment of inertia I about the beam axis1, which we will assume to be a fixed axis. 

 
 

                                                 
1  The symbol I is commonly used by Engineers for two different terms.  In problems involving 

beam bending, such as example 2, I is used for the “second moment of area”.  This has 

units of [length4].  In example 3, I is used for the “moment of inertia”, which has units of 

[mass x length2].  The two terms are completely different and you should take care not 

to confuse them. 

Clamp 
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STEP 1:  Dynamic Model    STEP 2:  Free Body Diagram 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
STEP 3:  Equation of Motion 
 
 
 
 
 
 
 
 
The natural frequency for this system is 
 
 
 
 
 
 
 
 

Example 4 Rocker System 

 
The previous examples are very simple systems.  Example 4 is more typical of what you will 
meet in this module.  It consists of a rigid, massless bar with a fixed pivot at one end and a 
large mass attached at the other.  The rocking motion about the pivot is restrained by two 
springs, one attached to the mass and the other that is connected to the bar, part way along 
its length.   
 
Note: We will use the angular displacement of the bar about the fixed pivot as the motion 

coordinate and assume that this displacement is small.  This means that  cos θ = 1  and 
sin θ = tan θ = θ.  Taken together with the earlier assumption that small displacements 
mean that we can assume that stiffness values are constant, the model will give an 
equation of motion that is a second order ordinary differential equation with constant 
coefficients. 
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STEP 1:  Dynamic Model     STEP 2:  Free body diagram2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 
 
 
STEP 3:  Equation of Motion 
 
 
 
 
 
 
 
 
 
 

We can write down the expression for the natural frequency from the coefficients of θ  and θ. 

 
 
 
 
 
 

                                                 
2  If you’re worried that gravity is again ignored, remember that as the bar moves down under 

the effect of gravity, K1 will compress and K2 will extend.  Once in equilibrium, the moment 
that the force mg exerts about the pivot will be exactly balanced by the moments from the 
forces in the two springs.  All of these forces are still there in the vibrating system, but 
since they cancel out, we don’t need to include them in the equation.   

Rigid, massless bar

L1

L2

K1

K2

m

K1

K2

m
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Advice for Tackling Vibration Problems 
 
As systems become more complicated, the scope for making mistakes increases.  You must 
adopt a systematic approach to setting out problems.  This approach is summarised by 
the three steps given on page 1 and will be used for all of the examples presented in the 
lectures.  You should follow the same three steps when you tackle problems. 
 
Fortunately, when you reach the end of Step 3 and you have the equation of motion, it’s 
possible to tell immediately if it’s wrong!   
 

 For all real vibrating systems, every term in the expressions for the 
coefficients of both the displacement and acceleration MUST be positive.   

 

 If you find a negative sign anywhere, you can be certain that you have 
made a mistake somewhere.   

 
The most common mistakes are: 

1. One or more forces on the free body diagram may have been drawn in the wrong 
direction. 

2. Forces or moments may not have been resolved in the same direction as the 
motion coordinate. 

 
Because we can make this check for errors, you should derive the equation of motion 

using symbols and only substitute the numerical values at that stage.3 

 
Unfortunately, there is no way of knowing that the equation is correct, but being able to tell if 
it’s wrong is a good start! 
 

 

                                                 
3  In case it’s not obvious, someone could work out the coefficient for θ in Example 4 to be 

2

22

2

11 LKLK   and, depending on the stiffness and length values given, could still get a 

positive numerical value for the coefficient.  The value would, of course, be wrong since the 
expression itself is wrong.  Working with symbols up to this point makes the presence of 
the negative sign apparent. 


